Using External Libraries

In this notebook, we explain how to extract the signals preprocess with external libraries and do predictive modeling.

Execute with

Table of Contents

Import Libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn import svm
import phyaat
print('Version :' ,phyaat.__version__)
import phyaat as ph
PhyAAt Processing lib Loaded...
Version : 0.0.2

Read the data of subject=1

dirPath = ph.download_data(baseDir='../PhyAAt_Data', subject=1,verbose=0,overwrite=False)

baseDir='../PhyAAt_Data'

SubID = ph.ReadFilesPath(baseDir)

Subj = ph.Subject(SubID[1])
Total Subjects :  1
Subj.filter_EEG(band =[0.5],btype='highpass',order=5)

Extract Raw Signals

XE = Subj.getEEG().to_numpy()
XG = Subj.getGSR().to_numpy()
XP = Subj.getPPG().to_numpy()
plt.figure(figsize=(13,3))
plt.plot(XE[:10000,:]+np.arange(14)*100)
plt.show()

png

plt.figure(figsize=(12,3))
plt.plot(XG[:10000,:])
plt.show()

png

plt.figure(figsize=(12,3))
plt.plot(XP[:10000,:])
plt.show()

png

Execute with